Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide.
نویسندگان
چکیده
Interactive effects of root restriction and atmospheric CO(2) enrichment on plant growth, photosynthetic capacity, and carbohydrate partitioning were studied in cotton seedlings (Gossypium hirsutum L.) grown for 28 days in three atmospheric CO(2) partial pressures (270, 350, and 650 microbars) and two pot sizes (0.38 and 1.75 liters). Some plants were transplanted from small pots into large pots after 20 days. Reduction of root biomass resulting from growth in small pots was accompanied by decreased shoot biomass and leaf area. When root growth was less restricted, plants exposed to higher CO(2) partial pressures produced more shoot and root biomass than plants exposed to lower levels of CO(2). In small pots, whole plant biomass and leaf area of plants grown in 270 and 350 microbars of CO(2) were not significantly different. Plants grown in small pots in 650 microbars of CO(2) produced greater total biomass than plants grown in 350 microbars, but the dry weight gain was found to be primarily an accumulation of leaf starch. Reduced photosynthetic capacity of plants grown at elevated levels of CO(2) was clearly associated with inadequate rooting volume. Reductions in net photosynthesis were not associated with decreased stomatal conductance. Reduced carboxylation efficiency in response to CO(2) enrichment occurred only when root growth was restricted suggesting that ribulose-1,5-bisphosphate carboxylase/oxygenase activity may be responsive to plant source-sink balance rather than to CO(2) concentration as a single factor. When root-restricted plants were transplanted into large pots, carboxylation efficiency and ribulose-1,5-bisphosphate regeneration capacity increased indicating that acclimation of photosynthesis was reversible. Reductions in photosynthetic capacity as root growth was progressively restricted suggest sink-limited feedback inhibition as a possible mechanism for regulating net photosynthesis of plants grown in elevated CO(2).
منابع مشابه
Variation in growth stimulation by elevated carbon dioxide in seedlings of some C3 crop and weed species
Seven C3 crop and three C3 weed species were grown from seed at 360 and at 700 cm3 m–3 carbon dioxide concentrations in a controlled environment chamber to compare dry mass, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic acclimation at ambient and elevated carbon dioxide. The dry mass at the final harvest at elevated carbon dioxide relative to ...
متن کاملEffect of elevated carbon dioxide concentration and root restriction on net photosynthesis, water relations and foliar carbohydrate status of loblolly pine seedlings.
To determine the effects of CO(2)-enriched air and root restriction on photosynthetic capacity, we measured net photosynthetic rates of 1-year-old loblolly pine seedlings grown in 0.6-, 3.8- or 18.9-liter pots in ambient (360 micro mol mol(-1)) or 2x ambient CO(2) (720 micro mol mol(-1)) concentration for 23 weeks. We also measured needle carbohydrate concentration and water relations to determ...
متن کاملGrowth, CO2 exchange rate and dry matter partitioning in mungbean (Vigna radiata L.) grown under elevated CO2.
This study was conducted to determine the effects of anticipated future level of CO2 on growth and dry matter partitioning of mungbean (Vigna radiata). Plants were grown from seedlings to maturity inside the open top chamber under amhient CO2 (350 +/- 25 microL L(-1)) and elevated CO2 (600 +/- 50 microL L(-1)) at Indian Agricultural Research Institute, New Delhi (India). Plants were harvested a...
متن کاملPhotosynthetic acclimation to rising atmospheric carbon dioxide concentration.
With rising level of CO2 in the atmosphere plants are expected to be exposed to higher concentration of CO2. Since, CO2 is a substrate limiting photosynthesis particularly in C3 plants in the present atmosphere, the impact of elevated CO2 would depend mainly on how photosynthesis acclimates or adjusts to the long term elevated level of CO2. Photosynthetic acclimation is a change in photosynthet...
متن کاملEffects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings.
To investigate the interactive effects of atmospheric carbon dioxide concentration ([CO(2)]) and nutrition on photosynthesis and its acclimation to elevated [CO(2)], a two-way factorial experiment was carried out with two nutritional regimes (high- and low-nitrogen (N), phosphorus (P) and potassium (K)) and two CO(2) concentrations (360 and 720 ppm) with white birch seedlings (Betula papyrifera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 96 2 شماره
صفحات -
تاریخ انتشار 1991